Skip to main content

THE SERENDIPITY OF THE SCIENTIFIC METHOD: DISCOVERING DRUGS


The discoveries in science are not always determined by the strict formulation and testing of a formal hypothesis. Quite often, they involve serendipity and the luck of being in the right place and time, followed by a curiosity and willingness to change the direction of an experiment. This is especially true in the field of drug discoveries. The first antibiotic, penicillin, was discovered in the late 1920s by Dr. Alexander Fleming, who found a mold colony growing on a culture of bacteria that was wiping out the bacteria. He isolated the active ingredient that eventually launched the era of antibiotics. The search for new drugs to treat infections and cancer has been a continuous focus since that time. Even though the detailed science of testing a drug and working out its chemical structure and action required sophisticated scientific technology, the first and most important part of discovery often lies in a keen eye and an open mind.
            In 1987, Dr. Michael Zasloff, a physician and molecular biologist, was doing research in gene expression, using African clawed frogs as a source of eggs. After performing surgery on the frogs and routinely placing them back in a nonsterile aquarium, he was surprised to notice that most of the time the frogs did not get infected or die. If the animal had been a mammal such as a mouse, it would probably not have survived the nonsterile surgery. This led him to conclude that the frog’s skin must provide some form of natural protection. He observed that when the skin was stimulated by injury or irritants, it formed a thick white coating in a few moments that reminded him of a self-made “bandage” over the wound. He took a section of skin and extracted the components that were responsible for killing the microbes. His tests showed that they were small proteins called peptides, which he named magainins, after the Hebrew word for shield. Within 6 months of these finding, Dr. Zasloff made the decision to completely change the subject of his research and started up a new biotechnology company (Magainin Pharmaceuticals) to explore the therapeutic potential for magainins as well as other frog peptides.
            The initial tests on this new class of drugs would indicate that they do indeed destroy a variety of bacteria as well as fungi, protozoa, and viruses. Although they are toxic to human cells too, this makes them a possible candidate for cancer treatment. Currently the drugs are being synthesized and tested in the lab for effectiveness and safety. Dr. Zasloff’s intriguing observation and subsequent experiments had the impact of opening up a whole new area of biology: isolating antimicrobic peptides form multicellular organisms. Additional studies have shown that these compounds are widespread among amphibians, fish, birds, mammals, and plants. A number of companies are involved in developing applications for animal peptides. This discovery has been well timed, since resistance among microorganisms to traditional is a continuing problem. 

Comments

Popular posts from this blog

ក្រមសីលធម៌ឱសថការី

ក្រមសីលធម៌ឱសថការី ១​​.​ និយមន័យក្រមសីលធម៌វិជ្ជាជីវៈឱសថ? ចំ​​ៈ គឺជាកាតព្វកិច្ចដែលឱសថការីត្រូវបំេពញ ចំពោះអតិថិជន សហការី អ្នកផ្តល់សេវា​ខាភិបាល និស្សិត វិជ្ជាជីវៈ និង​ អាជ្ញាធរមានសមត្ថកិច្ចក្នុងការអនុវត្តវិជ្ជាជីវៈឱសថ។​ ២. លក្ខណៈខុសគ្នារវាង ក្រមសីមធម៌វិជ្ជាជីវៈ​ និង​និតិក្រម? ចំៈ​ មាន៣ចំនុចៈ - ការរៀបចំ៉ ( development) ៖ ក្រមសីលធម៌ត្រូវបានរៀបចំដោយគណៈឱសថការីកម្ពុជា ( pharmacy professional ethic) រីនិតិក្រមត្រូវបានរៀបចំដោយស្ថាប័ននិតិបញ្ញត្តិ ឬស្ថាប័ននិតិប្រតិបត្តិ - ដែននៃការអនុវត្ត ( the field of implementation) ៖ ក្រមសីធម៌វិជ្ជាជីវៈត្រូវអនុវត្តចំពោះតែឱសថការីណាដែលប្រកបវិជ្ជាជីវៈឱសថ រីនិតិក្រមត្រូវអនុវត្តចំពោះរូបវ័ន្តបុគ្គល ( Physical person) និងនិតិបុគ្គល (ស្ថាប័នឬក្រសួង.. ) - ទោសបញ្ញត្តិ ការប្រព្រឹត្តល្មើសនិងក្រមសីលធម៌វិជ្ជាជីវៈ​​ ត្រូវទទួលទោសដែលមានលក្ខណៈជាអង្គការវិន័យ​ ដែលវិនិច្ឆ័យដោយ ក្រុមប្រឹក្សាគណៈឱសថការី​ ដូចជាការស្តីបន្ទោស ការប្រមានជាលាយ លក្ខអក្សរ ការផ្ជួរសមាជិកភាពជាបណ្តោះ អាសន្ន និង​ការដកហូតសមាជិកភាពជាអចិន្ត្រៃ៌។​ រីការប្រព្រឹត្តល្មើសនិងនិតិក្រមត្រូវផ្តន្ទាទោសដែលមានលក្ខណៈជា...

THE CLASSIC STAGES OF CLINICAL INFECTIONS

As the body of the host responds to the invasive and toxigenic activities of a parasite, it passes through four distinct phases of infection and disease: the incubation period, the prodromium, the period of invasive, and the convalescent period.             The incubation period the time form initial contact with the infectious agent to the appearance of the first symptoms. During the incubation period, the agent is multiplying at the portal of entry but has not yet caused enough damage to elicit symptoms. Although this period is relatively well defined and predictable for each microorganism, it does vary according to host resistance, degree of virulence, and distance between the target organ and the portal of entry (the farther apart, the longer the incubation period). Overall, an incubation period can range from several hours in pneumonic plaque to several years in leprosy. The majority of infections, however,...

The major events in Inflammation

This is the animation of acute inflammation response: