Skip to main content

The Development of Blood cells and platelets

Haematopoiesis (from Ancient Greek: αἷμα, "blood"; ποιεῖν "to make") (or hematopoiesis in the United States; sometimes also haemopoiesis or hemopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult person, approximately 1011–1012 new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation


Haematopoietic stem cells (HSCs)

Haematopoietic stem cells (HSCs) reside in the medulla of the bone (bone marrow) and have the unique ability to give rise to all of the different mature blood cell types. HSCs are self renewing: when they proliferate, at least some of their daughter cells remain as HSCs, so the pool of stem cells does not become depleted. The other daughters of HSCs (myeloid and lymphoid progenitor cells), however can each commit to any of the alternative differentiation pathways that lead to the production of one or more specific types of blood cells, but cannot self-renew. This is one of the vital processes in the body.

Lineages



All blood cells are divided into three lineages.
Granulopoiesis (or granulocytopoiesis) is haematopoiesis of granulocytes.
Megakaryocytopoiesis is haematopoiesis of megakaryocytes.

Locations

In developing embryos, blood formation occurs in aggregates of blood cells in the yolk sac, called blood islands. As development progresses, blood formation occurs in the spleenliver and lymph nodes. When bone marrowdevelops, it eventually assumes the task of forming most of the blood cells for the entire organism. However, maturation, activation, and some proliferation of lymphoid cells occurs in secondary lymphoid organs (spleen, thymus, and lymph nodes). In children, haematopoiesis occurs in the marrow of the long bones such as the femur and tibia. In adults, it occurs mainly in the pelvis, cranium, vertebrae, and sternum.

Extramedullary

In some cases, the liver, thymus, and spleen may resume their haematopoietic function, if necessary. This is calledextramedullary haematopoiesis. It may cause these organs to increase in size substantially. During fetal development, since bones and thus the bone marrow, develop later, the liver functions as the main haematopoetic organ. Therefore, the liver is enlarged during development.

Other vertebrates

In some vertebrates, haematopoiesis can occur wherever there is a loose stroma of connective tissue and slow blood supply, such as the gutspleenkidney or ovaries.

Maturation

As a stem cell matures it undergoes changes in gene expression that limit the cell types that it can become and moves it closer to a specific cell type. These changes can often be tracked by monitoring the presence of proteins on the surface of the cell. Each successive change moves the cell closer to the final cell type and further limits its potential to become a different cell type.

Determination

Cell determination appears to be dictated by the location of differentiation. For instance, the thymus provides an ideal environment for thymocytes to differentiate into a variety of different functional T cells. For the stem cells and other undifferentiated blood cells in the bone marrow, the determination is generally explained by the determinism theory of haematopoiesis, saying that colony stimulating factors and other factors of the haematopoietic microenvironment determine the cells to follow a certain path of cell differentiation. This is the classical way of describing haematopoiesis. In fact, however, it is not really true. The ability of the bone marrow to regulate the quantity of different cell types to be produced is more accurately explained by a stochastic theory: Undifferentiated blood cells are determined to specific cell types by randomness. The haematopoietic microenvironment prevails upon some of the cells to survive and some, on the other hand, to perform apoptosis and die. By regulating this balance between different cell types, the bone marrow can alter the quantity of different cells to ultimately be produced.

Haematopoietic growth factors


Growth factors initiate signal transduction pathways, altering transcription factors, that, in turn activate genes that determine the differentiation of blood cells.
The early committed progenitors express low levels of transcription factors that may commit them to discrete cell lineages. Which cell lineage is selected for differentiation may depend both on chance and on the external signals received by progenitor cells. Several transcription factors have been isolated that regulate differentiation along the major cell lineages. For instance, PU.1 commits cells to the myeloid lineage whereas GATA-1 has an essential role in erythropoietic and megakaryocytic differentiation. The Ikaros, Aiolos and Helios transcription factors play a major role in lymphoid development.

The myeloid-based model

For a decade now, the evidence is growing that HSC maturation follows a myeloid-based model instead of the 'classical' schoolbook dichotomy model. In the latter model, the HSC first generates a common myeloid-erythroid progenitor (CMEP) and a common lymphoid progenitor (CLP). The CLP produces only T or B cells. The myeloid-based model postulates that HSCs first diverge into the CMEP and a common myelo-lymphoid progenitor (CMLP), which generates T and B cell progenitors through a bipotential myeloid-T progenitor and a myeloid-B progenitor stage. The main difference is that in this new model, all erythroid, T and B lineage branches retain the potential to generate myeloid cells (even after the segregation of T and B cell lineages). The model proposes the idea of erythroid, T and B cells as specialized types of a prototypic myeloid HSC. 

Reference: Wikipedia.com

Comments

Post a Comment

Popular posts from this blog

ក្រមសីលធម៌ឱសថការី

ក្រមសីលធម៌ឱសថការី ១​​.​ និយមន័យក្រមសីលធម៌វិជ្ជាជីវៈឱសថ? ចំ​​ៈ គឺជាកាតព្វកិច្ចដែលឱសថការីត្រូវបំេពញ ចំពោះអតិថិជន សហការី អ្នកផ្តល់សេវា​ខាភិបាល និស្សិត វិជ្ជាជីវៈ និង​ អាជ្ញាធរមានសមត្ថកិច្ចក្នុងការអនុវត្តវិជ្ជាជីវៈឱសថ។​ ២. លក្ខណៈខុសគ្នារវាង ក្រមសីមធម៌វិជ្ជាជីវៈ​ និង​និតិក្រម? ចំៈ​ មាន៣ចំនុចៈ - ការរៀបចំ៉ ( development) ៖ ក្រមសីលធម៌ត្រូវបានរៀបចំដោយគណៈឱសថការីកម្ពុជា ( pharmacy professional ethic) រីនិតិក្រមត្រូវបានរៀបចំដោយស្ថាប័ននិតិបញ្ញត្តិ ឬស្ថាប័ននិតិប្រតិបត្តិ - ដែននៃការអនុវត្ត ( the field of implementation) ៖ ក្រមសីធម៌វិជ្ជាជីវៈត្រូវអនុវត្តចំពោះតែឱសថការីណាដែលប្រកបវិជ្ជាជីវៈឱសថ រីនិតិក្រមត្រូវអនុវត្តចំពោះរូបវ័ន្តបុគ្គល ( Physical person) និងនិតិបុគ្គល (ស្ថាប័នឬក្រសួង.. ) - ទោសបញ្ញត្តិ ការប្រព្រឹត្តល្មើសនិងក្រមសីលធម៌វិជ្ជាជីវៈ​​ ត្រូវទទួលទោសដែលមានលក្ខណៈជាអង្គការវិន័យ​ ដែលវិនិច្ឆ័យដោយ ក្រុមប្រឹក្សាគណៈឱសថការី​ ដូចជាការស្តីបន្ទោស ការប្រមានជាលាយ លក្ខអក្សរ ការផ្ជួរសមាជិកភាពជាបណ្តោះ អាសន្ន និង​ការដកហូតសមាជិកភាពជាអចិន្ត្រៃ៌។​ រីការប្រព្រឹត្តល្មើសនិងនិតិក្រមត្រូវផ្តន្ទាទោសដែលមានលក្ខណៈជា

The major events in Inflammation

This is the animation of acute inflammation response: 

ការផ្តល់ដង្ហើមសិប្បសិម្មិត

របៀបផ្តល់ដង្ហើមសិប្បនិមិ្មត អ្នកនឹងអាចជួបនូវហេតុការណ៌ជាយថាហេតុដែលតម្រូវអោយអ្នកធ្វើការសង្គ្រោះជនរងគ្រោះជា បន្ទាន់តាមដែលអ្នកអាចធ្វើ​ បាន! ការរផ្តល់ដង្ហើមសិប្បនិម្មិត គេអាចធ្វើសូម្បីតែនៅពេលជនរងគ្រោះនៅដង្ហើមខ្សោយផ្តឹកៗមិនទាន់ ដាច់ខ្យល់ក៏អាចធ្វើបានដែរ។​ នៅពេលអ្នកផ្តល់ដង្ហើមសិប្បនិម្មិត អ្នកត្រូវផ្លុំខ្យល់ដង្ហើមចេញអោយ ស្របនិងការដកដង្ហើមរបស់ជនរងគ្រោះ។​ ជំហានទី១ ·        ដាក់ជនរងគ្រោះអោយដេកផ្ងា មុខឡើងលើ ·        ការឆ្លើយតប-តើជនរងគ្រោះដឹងខ្លួនរឺទេ? ·        ពិនិត្យមើលចលនាដើមទ្រូងដាក់ត្រចៀករបស់អ្នកលើមាត់របស់ជនរងគ្រោះ ដើម្បីពិនិត្យមើលដង្ហើម។​ ·        ហៅរកជំនួយ។​ ជំហានទី២ លើកចង្កាឡើង បើសិន ក​ ជនរងគ្រោះគ្មានរបួស ·        ផ្អៀងក្បាលជនរងគ្រោះដើម្បី “ ហិតក្លិន ” (មានក្លិនអ្វីចេញមករឺទេ) ដោយយកដៃម្ខាង ទៀតទ្រ ក របស់គាត់ចុះ ក្រោម។​ ·        សង្កត់អណ្តាត និង​ចង្ការបស់ជនរងគ្រោះនៅចន្លោះម្រាមដៃរបស់អ្នក រួចជូតសំអាត វត្ថុដែលនៅជាប់ក្នុងមាត់របស់គាត់ចេញដោយប្រើម្រាមដៃ និង កូនកន្សែងដៃហើយ ពិនិត្យមើលអណ្តាតរបស់គាត់កុំឲធ្លាក់ទៅក្រោយ។​ ជំហានទី៣ ច្របាច់ច្រមុះជនរងគ្រោះឲជិតរួចដកដង្ហើមរបស់អ្នកឲវែង ដាក់មាត់របស់